Announcement

Fiber Optic Component Attenuators
Global Market Forecast & Analysis
2015-2021

This report presents the ElectroniCast worldwide forecast of the use of component-level fixed and variable fiber optic attenuators.

Study Released: October 12, 2016
Fiber Optic Component Attenuators
Global Market Forecast (2015-2021)

Published: October 12, 2016
Text Pages: 715 (PDF)
Also Included: Excel File and PowerPoint Slides
Fee: $4,490

This is the ElectroniCast worldwide market forecast of the consumption of component-level fiber optic attenuators in communication applications. The optical attenuators, which are covered in this study, are components used to control (reduce) the power level of an optical signal used in optical fiber communication networks. Fiber optic attenuators are an important part of the optical communication link by allowing the adjustment of signal transmission into the dynamic range of the receiver. Either a fixed or variable attenuator is generally positioned before a receiver to adjust optical power that otherwise might fluctuate above an extreme range of the receiver’s design, causing it to generate errors.

Fixed-type (not adjustable) fiber optic attenuators refer to the attenuator that can reduce the power of fiber light at a fixed value loss, for example, 5dB. While variable fiber optic attenuators refer to the attenuator that can generate an adjustable Loss to the fiber optic link. Fiber optic attenuators can be designed to use with various kinds of fiber optic connectors. The attenuators can be female-to-female, which are referred to as bulkhead- types; or male-to-female, which are referred to as plug-types. In-Line fiber optic attenuators are designed with a piece of fiber optic cable at any length and/or connectors.

Variable optical attenuators (VOAs) are either manually adjustable or electronically adjustable. VOAs have been widely used in fiber-optic communication, optical signal processing, fiber optic sensing as well as testing instruments.
This report quantifies stand-alone component-level fiber optic attenuators, as well as component-level fiber optic attenuators that are inside value-added or integrated modules. However, only the fiber optic attenuators are counted, not the entire value-added module.

When counting (quantifying) variable optical attenuator array modules and integrated modules, which may have more than one component-level attenuator, each component-level attenuator is counted separately. For example: with an integrated value-added module, we count only the complete (component-level) fiber optic attenuator as well as cost-adjusting for the optics, optical fiber alignments, and optical fiber and associated packaging, and other required materials.

Typically, fiber optic attenuators have used filter technology to decrease optical power. Light is usually transmitted from one fiber, through a spatial or temporal filter, and then focused into a second fiber for transmission through the balance of the optical links. Some of the other methods include angular (APC), lateral or axial displacement of two fiber ends, grayscale (neutral density) filters, fiber macro-bending, liquid crystals, PLC, MEMS, magneto-optic, acousto-optic or electro-optic.

Fixed attenuators (not adjustable) afford the network designer an inexpensive lumped element to decrease optical power. Packaged in either panel mount or cable assemblies, fixed attenuator types include bulkhead, connector build out, jumper/pigtailed and in-line. Attenuation is often segmented into whole decibel increments such as 1dB, 3dB, 5dB, 10dB, 13dB, 15dB and 20dB. Fiber attenuators are often associated with a connector-type, such as: LC, SC, ST, FC, MU, SC/APC, FC/APC, and other, as well as optical fiber-type (single mode and multimode).

Variable (adjustable) attenuators are ideal for simulating cable loss for research and development (laboratory) testing of optical communication link power limits or reducing power in the links where receivers are in the process of being overloaded. Fixed in-line (cable assembly/jumper) attenuators can distinguish the color band coding process to simplify the specification identification of the optical communication link components during field installation, stocking, or maintenance operations. VOAs (variable optical attenuators) enable adjustment capabilities, so the injected loss may be simply reduced as specific components degrade and increase their own attenuation over a few years.

The variable optical attenuators (VOA), also known as variable fiber-optic attenuators (VFOA) is a basic building block for several optical systems such as wavelength division multiplexed (WDM) transmission systems, optical beam formers, fiber-optic adaptive controls, and other applications.
The market data are segmented into the following geographic regions, plus a Global summary:

- America (North, Central and South America)
- EMEA (Europe, Middle Eastern countries, plus Africa)
- APAC (Asia Pacific)

In this report, the fiber optic attenuator market is also presented by the following product categories:

- Fixed
 - Bulkhead/Plug/Panel Mount
 - In-Line Jumper
- Variable (VOA)
 - Manually VOA
 - Electronically VOA (EVOA)
 - MEMS-Based EVOA
 - Other EVOA

The worldwide market forecast of the consumption of fiber optic attenuators is segmented into the following communication applications:

- Telecommunications
- Private Data LAN/WAN
- Cable TV
- Military/Aerospace
- Specialty

Below, are three levels (or “food chain”) pertaining to the fiber optic attenuator marketplace. For the purposes of this ElectroniCast study, we quantify and provide a market forecast for “Level 2”

Level 1 - The chip, die

Level 2 – The Component-Level fiber optic attenuator

Level 3 – Module (array attenuators, integrated modules, other)
INFORMATION BASE

This study is based on analysis of information obtained continually over the past two decades, but updated through early-October 2016. During this period, ElectroniCast analysts performed interviews with authoritative and representative individuals in the fiber optics, telecommunications, datacom, cable TV and other communication industries, from the standpoint of both suppliers and users of fiber optic transmission links. The interviews were conducted principally with:

- Engineers, marketing personnel and management at manufacturers of fiber optic attenuators, circulators, collimators, specialty fiber, connectors, isolators, couplers, DWDM filter modules, dispersion compensators, photonic switches, modulators, transmitters/receivers, OADMs and other related optical communication components.

- Engineers, marketing, purchasing personnel and market planners at major users of passive and active optical components, such as telecommunication transmission, switching, distribution and apparatus equipment, telephone companies, data communications equipment companies, cable TV system suppliers, and a number of other end users of fiber optic communication components and technology.

The interviews covered issues of technology, pricing, contract size, reliability, documentation, installation/maintenance crafts, standards, supplier competition and other topics.

A full review of published information was also performed to supplement information obtained through interviews. The following sources were reviewed:

- Professional technical journals and papers; Trade press articles

- Technical conference proceedings

- Additional information based on previous ElectroniCast market studies, including the Fiber Optic Forecast Service Data Base, the Fiber Optic Cable Forecast, the Optical Amplifier and Component Global Forecast, the Fiber Optic Installation Apparatus Forecast, the Fiber Optic Circulator Forecast, Fiber Optic Coupler, Isolator, Filter, DWDM, Switch, Optical Add/Drop Multiplexers, Transmitters/Receivers, SONET/SDH, and other related component Market Forecasts

- Personal knowledge of the research team
In analyzing and forecasting the complexities of the Global market for fiber optic communication components, it is essential that the market research team have a good and a deep understanding of the technology and of the industry. ElectroniCast members who participated in this report were qualified.

Bottom-up Methodology ElectroniCast forecasts are developed initially at the lowest detail level and then summed to successively higher levels. The background market research focuses on the projected amount of each type of product used in each application in the base year, and the prices paid at the first transaction from the manufacturer. This forms the base year data. ElectroniCast analysts then forecast the growth rates in component quantity use in device type, along with price trends, based on competitive, economic and technology forecast trends, and apply these to derive long term forecasts at the lowest application (use) levels. The usage growth rate forecasts depend heavily on analysis of overall end user trends toward digital broadband communication equipment usage and economic payback.

Cross-Correlation Increases Accuracy The quantities of fiber optic attenuators, DWDM, optical fiber/cable, connectors, transceivers, transport terminals, optical add/drop MUX, couplers/splitters, isolators, photonic switches and other products used in a particular application are interrelated. Since ElectroniCast conducts annual analysis and forecast updates in each fiber optic related product field, accurate current quantity estimates in each application are part of this corporate database. These quantities are cross-correlated as a "sanity check."

ElectroniCast, each year since 1985, has conducted extensive research and updated their forecasts of each fiber optic component category. As technology and applications have advanced, the number of component subsets covered by the forecasts has expanded impressively.

About ElectroniCast

ElectroniCast, founded in 1981, specializes in forecasting technology and global market trends in fiber optics communication components and devices, as well providing market data on light emitting diodes used in lighting.

As an independent consultancy we offer multi-client and custom market research studies to the world’s leading companies based on comprehensive, in-depth analysis of quantitative and qualitative factors. This includes technology forecasting, markets and applications forecasting, strategic planning, competitive analysis, customer-satisfaction surveys and marketing/sales consultation. ElectroniCast, founded as a technology-based independent consulting firm, meets the information needs of the investment community, industry planners and related suppliers.
Director of Study

Stephen Montgomery, MBA in Technology Management, President at ElectroniCast Consultants. He joined ElectroniCast in 1990 and has specialized in photonics and fiber optic components market & technology forecasting at ElectroniCast for over 25-years. He has given numerous presentations and published a number of articles on optical communication markets, technology, applications and installations. He is a member of the Editorial Advisory Board of LIGHTWAVE magazine (PennWell Publishing) and writes a monthly article covering the optical communication industry for OPTCOM Magazine in Japan (Kogyo Tsushin Co., Ltd.).

Proprietary Statement

ElectroniCast has a one-price structure –
“Same company/same business group/same country”

(1) The report may be used by any employee of the client (subscriber) company/organization at the same country and in the same business group. Some business groups in the same company may occupy different locations; therefore, different locations are allowed, as long as they are in the same country. There is no limit on the number of employees that may use the report (independent contractors on assignment with the client company are not considered eligible and may not use/view the ElectroniCast report - see below).

(2) All data and other information contained in this report are proprietary to ElectroniCast and may not be distributed or provided in either original or reproduced form to anyone outside the client’s internal employee organization, without prior written permission of ElectroniCast.

(3) ElectroniCast, in addition to multiple client programs, conducts proprietary custom studies for single clients in all areas of management planning and interest. Other independent consultants, therefore, are considered directly competitive. ElectroniCast proprietary information may not be provided to such consultants without written permission from ElectroniCast Consultants.
Fiber Optic Component Attenuators
Global Market Forecast & Analysis

Table of Contents

1. Executive Summary
 1.1 Overview
1.2 Fiber Optic Networks – Overview
2. Fiber Optic Attenuator Market Forecast
 2.1 Overview
 2.2 Global Market Forecast
 2.3 American Region Market Forecast
 2.4 EMEA Region Market Forecast
 2.5 APAC Region Market Forecast
3. Fiber Optic Attenuator Competitors and Related Entities
 3A Fiber Optic Communications, Inc.
 Accelink Technologies Co., Ltd
 AC Photonics, Inc.
 Adaman Co., Ltd.
 Advanced Connectek (ACON)
 AFW Technologies Pty. Ltd.
 Agilent
 Agiltron
 Alcoa Fujikura Ltd. (AFL), Noyes Fiber Systems
 Alliance Fiber Optic Products Inc. (AFOP) - Corning
 Amphenol Fiber Optic Products
 Anritsu Corporation
 AOC Technologies Inc.
 Ascentta Inc.
 Bank Photonics, Inc.
 Boston Applied Technologies Incorporated (BATi)
 Brimrose Corporation of America
 Cisco Systems
 CoAdna
 COF Communications Co., Ltd.
 Corning Incorporated
 Diamond SA
 DiCon Fiberoptics Inc.
 Digital Lightwave Incorporated – VeEX
 EigenLight Corporation
 Emerson Electric
 Enablence Technologies
 E-Photics (Shenzhen) Communications, Inc.
 EUROMICRON GmbH
 EXFO
 FDK Corporation
 Fiber Instrument Sales, Inc. (FIS)
 Fiber Optic & Telecommunication Inc. (FO&T)
 Fiber Optic Devices Ltd. (FOD)
 Fiber Systems Inc.
 Fiberall
 Fiberdyne Labs Inc.
 Fibrer Global Tech Ltd.
 Fiberlogix International Limited
 Fibersense & Signals, Inc.
 Finisar Corporation
 Flyin Optronics Co., Ltd.
 FOCI
Table of Contents - Continued

- FOLAN
- Fostec Company, Limited
- Furukawa Electric Co., Ltd. / OFS
- GAO Fiber Optics
- Gould Fiber Optics
- Greenlee Textron Inc.
- Hakuto Co., Ltd. (Photom)
- Hitachi Metals
- HUBER+SUHNER
- IDEAL Industries, Incorporated
- JDSU (Lumentum Operations LLC and Viavi)
- KAIAM Corporation
- Kingfisher International Pty Ltd, Australia
- Korea Optron Corporation (KOC)
- Lead Fiber Optics (LFO)
- LIGHTech Fiberoptics Inc.
- Lightwaves2020, Inc.
- LUXCOM
- Mellanox Technologies (Kotura)
- MEMSCAP
- Microwave Photonic Systems, Inc. (MPS)
- Molex Incorporated
- MRV Communications, Inc.
- NEL (NTT Electronics Co. Ltd.)
- NeoPhotonics Corporation
- Neptec Optical Solutions, Inc. (Neptec OS, Inc.)
- Newport Corporation
- Oclaro Incorporated
- O/E Land Inc.
- O-Net Communications Limited
- Oplink Communications, Inc. (Emit Technology)
- Optenet Communications Co.
- Opterna
- OptiWorks, Inc.
- Optokon a.s.
- Opto-Link Corporation Limited
- Optosun Technology
- Optowaves Inc.
- OSTenp Corporation Limited
- OZ Optics Ltd.
- Photop Technologies, Inc. (II-VI Incorporated)
- Precision Rated Optics (PRO)
- Princetel, Inc.
- Plank Optoelectronics, Inc.
- Radiant Communications Corporation
- Santec Corporation
- Seikoh Giken Company Limited
- Senko Advanced Components
- Sercalo Microtechnology Ltd.
- Sopto Technologies Co., Ltd.
- Shenzhen Tellid Communication Tech. Co., Ltd. (Tellid)
- Shinkwang Information Communications, Limited
- Spiktel Technologies Private Limited
- Sun Telecom
- SWCC Showa Holdings Co., Ltd.
- Telecom Bridge (TB Tech)
- Techwin (China) Industry Co., Ltd
- Tektronix
Table of Contents - Continued

Terahertz Technologies Inc. (TTI)
Thorlabs
Timbercon, Inc.
TE Connectivity Ltd.
Valdor Technology International Inc.
VeEx Inc (Sunrise Telecom Inc.)
Wilcom Inc (Precision Rated Optics/PRO)
Xerox Corporation
Yamasaki Optical Technology
Yokogawa Electric Corporation

4. Fiber Optic Attenuator Technology Review
 4.1 Overview
 4.2 Selected Research Paper Summaries
 4.3 Selected U.S. Patent Summaries

5. Optical Communication Trends
 5.1 Fiber Network Technology Trends
 5.2 Components
 5.2.1 Overview
 5.2.2 Transmitters and Receivers
 5.2.3 Optical Amplifiers
 5.2.4 Dispersion Compensators
 5.2.5 Fiber Cable
 5.3 Devices and Parts
 5.3.1 Overview
 5.3.2 Emitters and Detectors
 5.3.3 VCSEL & Transceiver Technology Review
 5.3.4 Optoelectronic Integrated Circuits / Photonic Integrated Circuits (PIC)
 5.3.5 Modulators

6. Methodology
 6.1 ElectroniCast Research and Analysis Methodology
 6.2 Assumptions of Fiber Optic Component Global Market Forecast

7. Definitions - Acronyms, Abbreviations, and General Terms

8. Market Forecast Data Base – Overview and Tutorial
 8.1 Overview
 8.2 Tutorial

Market Forecast Data Base – Excel Spreadsheets:
 Global
 America
 EMEA
 APAC

Data Figures – PowerPoint Slides

List of Figures

1.1.1 Fiber Optic Component Attenuators Global Forecast, By Type ($Million)
1.1.2 EVOA Global Forecast, By Type ($, Million)
1.1.3 Fiber Optic Component Attenuators Global Forecast, By Application ($Million)
1.1.4 Fiber Optic Component Attenuators Global Forecast, By Region ($Million)
1.1.5 Optical Fiber Amplifier Performance Trends
1.1.6 Hand-Held Fiber Test Attenuator
1.1.7 Hand-Held Fiber Test Attenuator
1.2.1 FTTP PON Architecture
1.2.2 Basic Data Center Topology
1.2.3 Multi-Tier Data Center Architecture
1.2.4 HFC Distribution System
1.2.5 Fiber Map (United States of America)
List of Figures - Continued

1.2.6 Fiber Service Pricing Comparison
1.2.7 Fiber Hut, Telecom Cabinets, and FTTH Network Configuration
1.2.8 Fiber Optic Equipment Building – Fiber Hut
1.2.9 Types of Metro Networks
1.2.10 Africa: Subocean Fiber Cable
1.2.11 South-East Asia Japan Cable System Upgrade
1.2.12 Data Centers in Japan
1.2.13 Data Centers in Asia
1.2.14 Distributed Continuous Fiber Optic Sensor System Components
2.1.1 Assortment of Fiber Optic Attenuators
2.1.2 Fixed-Type/Plug-Type (Male/Female) Attenuators
2.1.3 Fixed-Type FC/PC Bulkhead Female-to-Female Fiber Optic Attenuator
2.1.4 Fiber Optic Patch Panel - Rack Mount- 12 ports
2.1.5 Fixed-Type Fiber Optic Inline Attenuator with Jumper Cord/Connectors
2.1.6 Plug-Type Variable Manual Attenuator
2.1.7 Bulkhead-Type Variable Manual Attenuator
2.1.8 Manual Fiber Optic Variable Attenuator Module
2.1.9 MEMS-Based Electronically Fiber Optic Variable Attenuators
2.1.10 MEMS Variable Optical Attenuator Schematic
2.1.11 MEMS Variable Optical Attenuator (VOA)
2.1.12 Linear Sliding Neutral Density (ND) Filter-Based EVOA
2.1.13 Fiber To The Home Installation
2.1.14 Metro Ethernet
2.1.15 Integration vs. Discrete Solutions
2.1.16 Configuration of the ROADM Optical Switch Module
2.1.17 Dynamic Wavelength Processor Wavelength Selective Switch (WSS)
2.3.1 EVOA in the America Forecast, By Type ($, Million)
2.4.1 EVOA in the EMEA Region Forecast, By Type ($, Million)
2.5.1 EVOA in the APAC Region Forecast, By Type ($, Million)
3.1 Small Form Packaged Variable Optical Attenuator
3.2 Mirror MEMS Variable Optical Attenuator
3.3 MEMS Attenuator Array Module
3.4 Manually Tuned Variable Optical Attenuator
3.5 MEMS Variable Optical Attenuator Schematic
3.6 MEMS Variable Optical Attenuator (VOA)
3.7 In-Line Fixed Attenuator
3.8 Plug-In Fixed Attenuators
3.9 Fixed Attenuator with LC Connector
3.10 Variable Optical Attenuator Module with Angled Interface
3.11 SM Optical Fiber Attenuators— Buildout Style
3.12 Variable Optical Attenuators (VOAs)
3.13 Fixed In-Line Attenuators
3.14 Fixed Plug Style Attenuators
3.15 MTP (M) 2x Loopback In-Line
3.16 Manual VOA
3.17 EVOA
3.18 Fixed-Type Attenuators
3.19 MEMS Variable Optical Attenuator (VOA)
3.20 Build-Out Optical Attenuator - LC
3.21 In-Line Optical Attenuators, Flat Wavelength, LC UPC
3.22 In-Line Optical Attenuator
3.23 MEMS Biomedical Variable Optical Attenuator
3.24 Very Small VOA
3.25 Very Small Free-Space VOA
3.26 Optical Fixed Attenuators
3.27 Very Small Free-Space VOA Schematic
List of Figures - Continued

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.28</td>
<td>In-Line Attenuator</td>
</tr>
<tr>
<td>3.29</td>
<td>Optical Fixed Attenuators</td>
</tr>
<tr>
<td>3.30</td>
<td>Optical Fixed Attenuators</td>
</tr>
<tr>
<td>3.31</td>
<td>Handheld Optical Variable Attenuator For Single-Mode Fiber</td>
</tr>
<tr>
<td>3.32</td>
<td>Handheld Optical Attenuator</td>
</tr>
<tr>
<td>3.33</td>
<td>Multimedia Qualification Tester</td>
</tr>
<tr>
<td>3.34</td>
<td>MEMS Variable Optical Attenuators</td>
</tr>
<tr>
<td>3.35</td>
<td>Electrostatic MEMS Variable Optical Attenuator</td>
</tr>
<tr>
<td>3.36</td>
<td>Hand-Held Motorized Optical Level Attenuator</td>
</tr>
<tr>
<td>3.37</td>
<td>Fiber Test Attenuator</td>
</tr>
<tr>
<td>3.38</td>
<td>Fixed Attenuator-plug type</td>
</tr>
<tr>
<td>3.39</td>
<td>Attenuated Patchcord & In-line Patchcord</td>
</tr>
<tr>
<td>3.40</td>
<td>Optical Attenuator (VOA)</td>
</tr>
<tr>
<td>3.41</td>
<td>Fixed-Type Fiber Optic Attenuators</td>
</tr>
<tr>
<td>3.42</td>
<td>8-Channel VOA Array Module</td>
</tr>
<tr>
<td>3.43</td>
<td>Single-Channel VOA</td>
</tr>
<tr>
<td>3.44</td>
<td>Small Form-factor Pluggable (SFP) VOA Module</td>
</tr>
<tr>
<td>3.45</td>
<td>Variable Optical Attenuators (VOA) Modules</td>
</tr>
<tr>
<td>3.46</td>
<td>Arrayed Variable Optical Attenuator Module</td>
</tr>
<tr>
<td>3.47</td>
<td>VOA Multiplexer / Demultiplexer Module</td>
</tr>
<tr>
<td>3.48</td>
<td>Illustration of the Use of a VOA Multiplexer / Demultiplexer</td>
</tr>
<tr>
<td>3.49</td>
<td>Illustration of a VOA Multiplexer / Demultiplexer Module</td>
</tr>
<tr>
<td>3.50</td>
<td>Optical Function of M-Z Interferometer on Silica PLC</td>
</tr>
<tr>
<td>3.51</td>
<td>Illustration of Ultra-High-Speed and High-Capacity Optical Transmissions</td>
</tr>
<tr>
<td>3.52</td>
<td>Variable Optical Attenuator</td>
</tr>
<tr>
<td>3.53</td>
<td>Bulkhead Fixed Optical Attenuators</td>
</tr>
<tr>
<td>3.54</td>
<td>Collimator Variable Optical Attenuator</td>
</tr>
<tr>
<td>3.55</td>
<td>Product Coverage</td>
</tr>
<tr>
<td>3.56</td>
<td>Product Offering</td>
</tr>
<tr>
<td>3.57</td>
<td>Attenuator Box with Three Attenuators</td>
</tr>
<tr>
<td>3.58</td>
<td>MEMS Variable Optical Attenuator</td>
</tr>
<tr>
<td>3.59</td>
<td>MEMS Variable Optical Attenuator</td>
</tr>
<tr>
<td>3.60</td>
<td>Hand-Held Digital Optical Variable Attenuator</td>
</tr>
<tr>
<td>3.61</td>
<td>Dual-Polarizer-Based Stepper Motor-Driven PM Fiber VOA</td>
</tr>
<tr>
<td>3.62</td>
<td>Fixed-Type Optical Attenuators</td>
</tr>
<tr>
<td>3.63</td>
<td>Fixed-Type Optical Attenuators</td>
</tr>
<tr>
<td>3.64</td>
<td>Fixed-Type Optical Attenuators</td>
</tr>
<tr>
<td>3.65</td>
<td>MEMS-Based VOA</td>
</tr>
<tr>
<td>3.66</td>
<td>Digital Optical Variable Attenuator</td>
</tr>
<tr>
<td>3.68</td>
<td>Fixed-Type Optical Attenuator Structure Comparison</td>
</tr>
<tr>
<td>3.69</td>
<td>Fiber Optic Attenuators</td>
</tr>
<tr>
<td>3.70</td>
<td>Optical Variable Test Attenuator</td>
</tr>
<tr>
<td>3.71</td>
<td>High-performance Variable Optical Attenuator Modules</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Fixed-Type Optical Attenuator Structure Comparison</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Dual-Polarizer-Based Stepper Motor-Driven PM Fiber VOA</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Variable Optical Attenuator Dies</td>
</tr>
<tr>
<td>4.1.4</td>
<td>MEMS-Based Variable Optical Attenuator Module</td>
</tr>
<tr>
<td>5.1.1</td>
<td>100G CFP2 Transceiver for 40km</td>
</tr>
<tr>
<td>5.3.1</td>
<td>CWDM SFP 1G 80km Transceiver</td>
</tr>
<tr>
<td>5.3.2</td>
<td>VITA 66 Fiber Optic Backplane Connector Module</td>
</tr>
<tr>
<td>5.3.3</td>
<td>VPX Board Utilizes VITA 66.4 Optical Backplane</td>
</tr>
<tr>
<td>5.3.4</td>
<td>Typical Intra-Office Interconnections</td>
</tr>
<tr>
<td>5.3.5</td>
<td>1-Port OC-768c/STM-256c Tunable WDMPOS Interface Module</td>
</tr>
<tr>
<td>5.3.6</td>
<td>Monolithic Indium Phosphide Photonic Integrated Circuit</td>
</tr>
<tr>
<td>5.3.7</td>
<td>Photonic Integrated Circuit</td>
</tr>
<tr>
<td>5.3.8</td>
<td>400 Gbit/sec Dual Polarisation IQ Modulator</td>
</tr>
<tr>
<td>5.3.9</td>
<td>40 to 60Gbps Silicon-Based Optical Modulator</td>
</tr>
<tr>
<td>5.3.10</td>
<td>Integrated silicon optical transceiver for large-volume data transmission</td>
</tr>
<tr>
<td>6.1.1</td>
<td>ElectroniCast Market Research & Forecasting Methodology</td>
</tr>
</tbody>
</table>
List of Tables

1.1.1 Global Fiber Optic Component Attenuator Forecast, by Type (Value Basis, $Million)
1.1.2 Global Fiber Optic EVOAs Consumption Forecast, by Type (Value Basis, $Million)
1.2.1 OM3- and OM4-Specified Distances for Ethernet
1.2.2 IEEE 802.3ba 40G/100G - Physical Layer Specifications
1.2.3 United States Broadband Plan – Goals
1.2.4 Mexico FTTX Number of Lines, By Selected Operators New Installation (Quantity)
1.2.5 Licensed Local Fixed Carriers in Hong Kong
1.2.6 Key specifications of the PC-1 Trans-Pacific System
1.7 Features: Distributed Continuous Fiber Optic Sensor System Components
2.2.1 Global Fiber Optic Component Attenuator Forecast, by Type (Value Basis, $Million)
2.2.2 Global Fiber Optic Component Attenuator Forecast, by Type (Quantity Basis, Units)
2.2.3 Global Fiber Optic Component Attenuator Forecast, by Type (Avg. Selling Price, each)
2.2.4 Global Fiber Optic EVOAs Consumption Forecast, by Type (Value Basis, $Million)
2.2.5 Global Fiber Optic Component Attenuator Forecast, by Region (Value Basis, $Million)
2.2.6 Global Fiber Optic Component Attenuator Forecast, by Region (Quantity Basis, Units)
2.2.7 Global Fiber Optic Component Attenuator Forecast, by Application ($Million)
2.2.8 Global Fiber Optic Component Attenuator Forecast, by Application (Quantity, Units)
2.3.1 America – Fiber Optic Component Attenuator Forecast, by Type (Value Basis, $Million)
2.3.2 America – Bulkhead/Plug/Panel Mounted Fixed Attenuators (Value, Quantity, ASP)
2.3.3 America – In-Line Jumper Fiber Optic Fixed Attenuator (Value, Quantity, ASP)
2.3.4 America – Manual VOA Component Attenuators (Value, Quantity, ASP)
2.3.5 America – Electrically VOA Component Attenuators (Value, Quantity, ASP)
2.4.1 EMEA – Fiber Optic Component Attenuator Forecast, by Type (Value Basis, $Million)
2.4.2 EMEA – Bulkhead/Plug/Panel Mounted Fixed Attenuators (Value, Quantity, ASP)
2.4.3 EMEA – In-Line Jumper Fiber Optic Fixed Attenuator (Value, Quantity, ASP)
2.4.4 EMEA – Manual VOA Component Attenuators (Value, Quantity, ASP)
2.4.5 EMEA – Electrically VOA Component Attenuators (Value, Quantity, ASP)
2.5.1 APAC – Fiber Optic Component Attenuator Forecast, by Type (Value Basis, $Million)
2.5.2 APAC – Bulkhead/Plug/Panel Mounted Fixed Attenuators (Value, Quantity, ASP)
2.5.3 APAC – In-Line Jumper Fiber Optic Fixed Attenuator (Value, Quantity, ASP)
2.5.4 APAC – Manual VOA Component Attenuators (Value, Quantity, ASP)
2.5.5 APAC – Electrically VOA Component Attenuators (Value, Quantity, ASP)
3.1 Fiber Optic Attenuator Competitors and Related Entities
3.2 Features and Applications for Fixed Type Attenuators
3.3 Specifications of Variable Optical Attenuators
8.1.1 Fiber Optic Attenuator Data Base (Excel Spreadsheets) Product Categories
8.1.2 Fiber Optic Attenuator Data Base (Excel Spreadsheets) Application Categories