Vaccines and Autoimmunity
Vaccines and Autoimmunity

EDITED BY

Yehuda Shoenfeld
Zabludowicz Center for Autoimmune Diseases
Sheba Medical Center
Tel Hashomer, Israel
Sackler Faculty of Medicine
Tel Aviv University
Tel Aviv, Israel

Nancy Agmon-Levin
Zabludowicz Center for Autoimmune Diseases
Sheba Medical Center
Tel Hashomer, Israel
Sackler Faculty of Medicine
Tel Aviv University
Tel Aviv, Israel

Lucija Tomljenovic
Neural Dynamics Research Group
University of British Columbia
Vancouver, BC, Canada

WILEY Blackwell
## Contents

Contributors, ix

**Introduction, 1**  
Yehuda Shoenfeld, Nancy Agmon-Levin and Lucija Tomljenovic

### PART I: MOSAIC OF AUTOIMMUNITY

1 **Role of Adjuvants in Infection and Autoimmunity, 11**  
Eitan Israeli, Miri Blank, and Yehuda Shoenfeld

2 **Infections as Adjuvants for Autoimmunity: The Adjuvant Effect, 25**  
Quan M. Nhu and Noel R. Rose

3 **Experimental Models of Adjuvants, 35**  
Nicola Bassi, Mariele Gatto, Anna Ghirardello, and Andrea Doria

4 **Answers to Common Misconceptions Regarding the Toxicity of Aluminum Adjuvants in Vaccines, 43**  
Lucija Tomljenovic and Christopher A. Shaw

5 **Allergy and Autoimmunity Caused by Metals: A Unifying Concept, 57**  
Vera Stejskal

6 **Genetics and Vaccinology, 65**  
John Castiblanco and Juan-Manuel Anaya

7 **Silicone and Autoimmune/Inflammatory Syndrome Induced by Adjuvants (ASIA), 79**  
Yair Levy and Rotem Baytner-Zamir

8 **Silicone Breast Implants and Autoimmune/Inflammatory Syndrome induced by Adjuvants (ASIA): A Literature Search, 87**  
Elisabetta Borella, Eitan Israeli, and Yehuda Shoenfeld

9 **Autoantibodies Induced by Vaccine, 93**  
Nataša Toplak and Tadej Avčin

10 **The ASIA Syndrome Registry, 103**  
Ignasi Rodriguez-Pintó and Yehuda Shoenfeld

11 **Vaccination in Autoimmune Diseases, 107**  
Carla Gonçalves, Schahin Saad, Clóvis A. Silva, and Eloisa Bonfá

12 **Vaccination in Patients with Autoimmune Inflammatory Rheumatic Diseases, 113**  
Abdulla Watad, Alessandra Soriano, and Yehuda Shoenfeld

### PART II: STUDIES ON AUTOIMMUNE CONDITIONS INDUCED BY VACCINATION

13 **Measles, Mumps, and Rubella Vaccine: A Triad to Autoimmunity, 129**  
Carlo Perricone, Guido Valesini, and Yehuda Shoenfeld

14 **Yellow Fever Vaccine and Autoimmunity, 135**  
Roger A. Levy and Rodrigo Poubel V. Rezende
Contents

15 Antiphospholipid Syndrome and Vaccines, 141
   Miri Blank and Paola Cruz-Tapias

16 Hepatitis B Vaccination and Autoimmunity, 147
   Daniel S. Smyk, Lazaros I. Sakkas, Yehuda Shoenfeld, and Dimitrios P. Bogdanos

17 Adverse Reactions to Human Papillomavirus Vaccines, 163
   Lucija Tomljenovic and Christopher A. Shaw

18 Influenza Vaccine and Autoimmune Diseases, 175
   Luis J. Jara, Gabriela Medina, Pilar Cruz Domínguez, Olga Vera-Lasstra, Miguel A. Saavedra, Mónica Vázquez del Mercado, and Minoru Satoh

19 Vaccines and Autoimmunity: Meningococcal Vaccines, 185
   Giovanna Passaro, Alessandra Soriano, and Raffaele Manna

20 Pneumococcal Vaccines and Autoimmune Phenomena, 191
   Elisabetta Borella, Nancy Agmon-Levin, Andrea Doria, and Yehuda Shoenfeld

21 BCG and Autoimmunity, 197
   Luigi Bernini, Carlo Umberto Manzini, and Clodoveo Ferri

PART III: AUTOIMMUNE DISEASES SOLICITED BY VACCINATION

22 Systemic Lupus Erythematosus Induced by Vaccines, 209
   Nurit Katz-Agranov and Gisele Zandman-Goddard

23 Vasculitides, 223
   Alessandra Soriano, Rotem Inbar, Giovanna Passaro, and Raffaele Manna

24 Vaccinations in Rheumatoid Arthritis, 233
   Eitan Giat and Merav Lidar

25 Undifferentiated Connective-Tissue Diseases, 247
   Maria Martinelli, Carlo Perricone, and Yehuda Shoenfeld

26 Vaccines, Infections, and Alopecia Areata, 255
   Yaron Zafrir, Sharon Baum, Nancy Agmon-Levin, and Yehuda Shoenfeld

27 Aluminum Particle Biopersistence, Systemic Transport, and Long-Term Safety: Macrophagic Myofasciitis and Beyond, 261
   Romain K. Gherardi, Josette Cadusseau, and François-Jérôme Authier

28 Immune Thrombocytopenic Purpura: Between Infections and Vaccinations, 271
   Carlo Perricone, Maurizio Rinaldi, Roberto Perricone, and Yehuda Shoenfeld

29 Vaccinations and Type 1 Diabetes, 283
   Alessandro Antonelli, Silvia Martina Ferrari, Andrea Di Domenicantonio, Ele Ferrannini, and Poupak Fallahi

30 Narcolepsy and H1N1 vaccine, 291
   María-Teresa Arango, Shaye Kivity, Nancy Agmon-Levin, Gili Givaty, Joab Chapman, and Yehuda Shoenfeld

31 Non-nutritional Environmental Factors Associated with Celiac Disease: Infections and Vaccinations, 301
   Aaron Lerner

32 Polymyalgia Rheumatica, 307
   Alessandra Soriano and Raffaele Manna

33 Acute Disseminated Encephalomyelitis: Idiopathic, Post-infectious, and Post-vaccination, 311
   Dimitrios Karussis and Panayiota Petrou
34 Fibromyalgia, Chronic Fatigue, Functional Disorders, and Vaccination: Where Do We Stand? 331
Jacob N. Ablin and Dan Buskila

35 Bullous Dermatoses, Infectious Agents, and Vaccines, 337
Yaron Zafrir, Nancy A$qmon-Levin, and Sharon Baum

36 Infections, Vaccinations, and Chronic Fatigue Syndrome, 345
Hussein Mahagna, Naim Mahroum, and Howard Amital

37 Myositis and Vaccines, 349
Ignasi Rodriguez-Pintó and Yehuda Shoenfeld

Index, 359


Contributors

Jacob N. Ablin  
Department of Rheumatology  
Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine  
Tel Aviv University  
Tel Aviv, Israel

Nancy Agmon-Levin  
Zabludowicz Center for Autoimmune Diseases  
Sheba Medical Center  
Tel Hashomer, Israel

Howard Amital  
Department of Medicine B  
Sheba Medical Center  
Tel Hashomer, Israel

Juan-Manuel Anaya  
Center for Autoimmune Diseases Research (CREA)  
School of Medicine and Health Sciences  
Del Rosario University  
Bogotá, Colombia

Alessandro Antonelli  
Department of Clinical and Experimental Medicine  
University of Pisa  
Pisa, Italy

María-Teresa Arango  
Zabludowicz Center for Autoimmune Diseases  
Sheba Medical Center  
Tel Hashomer, Israel

François-Jérôme Authier  
Faculty of Medicine  
University of Paris East  
Paris France

Tadej Avčin  
Department of Allergology  
Rheumatology and Clinical Immunology  
University Children’s Hospital  
University Medical Centre Ljubljana  
Ljubljana, Slovenia

Nicola Bassi  
Division of Rheumatology  
Department of Medicine  
University of Padua  
Padua, Italy

Sharon Baum  
Department of Dermatology  
Sheba Medical Center  
Tel Hashomer, Israel

Rotem Baytner-Zamir  
Department of Medicine E, Meir Medical Center  
Kfar Saba, Israel

Luigi Bernini  
Rheumatology Unit  
Department of Internal Medicine
Contributors

University of Modena and Reggio Emilia
Medical School
Modena, Italy

Miri Blank
Zabludowicz Center for Autoimmune Diseases
Sheba Medical Center
Tel Hashomer, Israel

Dimitrios P. Bogdanos
Institute of Liver Studies
King’s College London School of Medicine
King’s College Hospital
London, UK

Department of Medicine
School of Health Sciences
University of Thessaly
Larissa, Greece

Eloisa Bonfá
Division of Rheumatology
Children’s Institute Faculty of Medicine
University of São Paulo
São Paulo, Brazil

Elisabetta Borella
Division of Rheumatology
Department of Medicine
University of Padua, Padua
Italy

Zabludowicz Center for Autoimmune Diseases
Sheba Medical Center
Tel Hashomer, Israel

Dan Buskila
Rheumatic Disease Unit
Department of Medicine
Soroka Medical Center
Beersheba, Israel

Josette Cadusseau
Faculty of Medicine
University of Paris East
Paris, France

John Castiblanco
Center for Autoimmune Diseases Research (CREA)
School of Medicine and Health Sciences
Del Rosario University
Bogotá, Colombia

Joab Chapman
Zabludowicz Center for Autoimmune Diseases
and Department of Neurology
Sheba Medical Center
Tel Hashomer, Israel

Paola Cruz-Tapias
Doctoral Program in Biomedical Sciences
Del Rosario University
Bogotá, Colombia

Andrea Di Domenicantonio
Department of Clinical and Experimental Medicine
University of Pisa
Pisa, Italy

Pilar Cruz Dominguez
Research Division
Hospital de Especialidades
“Dr Antonio Fraga Mouret,”
Mexican Social Security Institute
National Autonomous University of Mexico
Mexico City, Mexico

Andrea Doria
Division of Rheumatology
Department of Medicine
University of Padua
Padua, Italy

Poupak Fallahi
Department of Clinical and Experimental Medicine
University of Pisa
Pisa, Italy

Ele Ferrannini
Department of Clinical and Experimental Medicine
University of Pisa
Pisa, Italy

Silvia Martina Ferrari
Department of Clinical and Experimental Medicine
University of Pisa
Pisa, Italy

Clodoveo Ferri
Rheumatology Unit
Department of Internal Medicine
University of Modena and Reggio Emilia
Medical School
Modena, Italy
Mariele Gatto
Division of Rheumatology
Department of Medicine
University of Padua
Padua, Italy

Romain K. Gherardi
Faculty of Medicine
University of Paris East
Paris, France

Anna Ghirardello
Division of Rheumatology
Department of Medicine
University of Padua
Padua, Italy

Eitan Giat
Rheumatology Unit
Sheba Medical Center
Tel Hashomer, Israel

Gili Givaty
Zabludowicz Center for Autoimmune Diseases
Department of Neurology and Sagol
Neuroscience Center
Sheba Medical Center
Tel Hashomer, Israel

Carla Gonçalves
Division of Rheumatology
Children’s Institute, Faculty of Medicine
University of São Paulo
São Paulo, Brazil

Rotem Inbar
Zabludowicz Center for Autoimmune Diseases
Sheba Medical Center
Tel Hashomer, Israel

Eitan Israeli
Zabludowicz Center for Autoimmune Diseases
Sheba Medical Center
Tel Hashomer, Israel

Luis J. Jara
Direction of Education and Research
Hospital de Especialidades “Dr Antonio Fraga Mouret,” Mexican Social Security Institute
National Autonomous University of Mexico
Mexico City, Mexico

Dimitrios Karussis
Department of Neurology
Multiple Sclerosis Center and Laboratory of Neuroimmunology
The Agnes-Ginges Center for Neurogenetics
Hadassah University Hospital
Jerusalem, Ein Karem, Israel

Nurit Katz-Agranov
Department of Medicine
Wolfson Medical Center
Tel Aviv, Israel

Shaye Kivity
Zabludowicz Center for Autoimmune Diseases
Rheumatic Disease Unit
and The Dr Pinchas Borenstein Talpiot Medical Leadership Program 2013
Sheba Medical Center
Tel Hashomer, Israel

Aaron Lerner
Pediatric Gastroenterology and Nutrition Unit
Carmel Medical Center
B. Rappaport School of Medicine
Technion – Israel Institute of Technology
Haifa, Israel

Roger A. Levy
Faculty of Medical Sciences
Rio de Janeiro State University
Rio de Janeiro, Brazil

Yair Levy
Department of Medicine E
Meir Medical Center
Kfar Saba, Israel

Sackler Faculty of Medicine
Tel Aviv University, Tel Aviv, Israel

Merav Lidar
Rheumatology Unit
Sheba Medical Center
Tel Hashomer, Israel

Sackler Faculty of Medicine
Tel Aviv University
Tel Aviv, Israel

Hussein Mahagna
Department of Medicine B
Sheba Medical Center
Tel Hashomer, Israel

Sackler Faculty of Medicine
Tel Aviv University, Tel Aviv, Israel
Contributors

Naim Mahroum
Department of Medicine B
Sheba Medical Center
Tel Hashomer, Israel

Sackler Faculty of Medicine
Tel Aviv University, Tel Aviv, Israel

Raffaele Manna
Periodic Fevers Research Center
Department of Internal Medicine
Catholic University of the Sacred Heart
Rome, Italy

Carlo Umberto Manzini
Rheumatology Unit
Department of Internal Medicine
University of Modena and Reggio Emilia
Medical School
Modena, Italy

Maria Martinelli
Zablowicz Center for Autoimmune Diseases
Sheba Medical Center
Tel Hashomer, Israel

Rheumatology Division, Department of Medicine
University of Brescia
Brescia, Italy

Gabriela Medina
Clinical Epidemiological Research Unit
Hospital de Especialidades "Dr Antonio Fraga Mouret,"
Mexican Social Security Institute
National Autonomous University of Mexico
Mexico City, Mexico

Quan M. Nhu
The W. Harry Feinstone Department of Molecular Microbiology and Immunology
Center for Autoimmune Disease Research, and
Department of Pathology
The Johns Hopkins Medical Institutions
Baltimore, MD, USA

Giovanna Passaro
Periodic Fevers Research Center
Department of Internal Medicine
Catholic University of the Sacred Heart
Rome, Italy

Carlo Perricone
Rheumatology, Department of Internal and Specialized Medicine
Sapienza University of Rome
Rome, Italy

Roberto Perricone
Rheumatology, Allergology, and Clinical Immunology
Department of Internal Medicine
University of Rome Tor Vergata
Rome, Italy

Panayiota Petrou
Department of Neurology, Multiple Sclerosis Center, and Laboratory of Neuroimmunology
The Agnes-Ginges Center for Neurogenetics
Hadassah University Hospital
Jerusalem, Israel

Rodrigo Poubel V. Rezende
Faculty of Medical Sciences
Rio de Janeiro State University
Rio de Janeiro, Brazil
Brazilian Society of Rheumatology
Rio de Janeiro, Brazil

Maurizio Rinaldi
Rheumatology, Allergology, and Clinical Immunology
Department of Internal Medicine
University of Rome Tor Vergata
Rome, Italy

Ignasi Rodriguez-Pintó
Department of Autoimmune Disease
Hospital Clinic de Barcelona
Barcelona, Spain

Noel R. Rose
The W. Harry Feinstone Department of Molecular Microbiology and Immunology
Center for Autoimmune Disease Research, and
Department of Pathology
The Johns Hopkins Medical Institutions
Baltimore, MD, USA

Schahin Saad
Division of Rheumatology
Children’s Institute
Faculty of Medicine
University of São Paulo
São Paulo, Brazil

Miguel A. Saavedra
Department of Rheumatology
Hospital de Especialidades “Dr Antonio Fraga Mouret” Mexican Social Security Institute
National Autonomous University of Mexico
Mexico City, Mexico
Lazaros I. Sakkas
Department of Medicine
School of Health Sciences
University of Thessaly
Larissa, Greece

Minoru Satoh
School of Health Sciences
University of Occupational and Environmental Health
Kitakyushu, Japan

Christopher A. Shaw
Department of Ophthalmology and Visual Sciences
Programs in Experimental Medicine and Neuroscience
University of British Columbia
Vancouver, BC, Canada

Yehuda Shoenfeld
Zabludowicz Center for Autoimmune Diseases
Sheba Medical Center
Tel Hashomer, Israel
Sackler Faculty of Medicine
Tel Aviv University
Tel Aviv, Israel

Clóvis A. Silva
Pediatric Rheumatology Unit
Children’s Institute, Faculty of Medicine
University of São Paulo
São Paulo, Brazil

Daniel S. Smyk
Institute of Liver Studies
King’s College London School of Medicine
King’s College Hospital
London, UK

Alessandra Soriano
Zabludowicz Center for Autoimmune Diseases
Sheba Medical Center
Tel Hashomer, Israel
Department of Clinical Medicine and Rheumatology
Campus Bio-Medico University
Rome, Italy

Vera Stejskal
Department of Immunology
University of Stockholm
Stockholm, Sweden

Lucija Tomljenovic
Neural Dynamics Research Group
University of British Columbia
Vancouver, BC, Canada

Nataša Toplak
Department of Allergology
Rheumatology and Clinical Immunology
University Children’s Hospital
University Medical Centre Ljubljana
Ljubljana, Slovenia

Guido Valesini
Rheumatology, Department of Internal and Specialized Medicine
Sapienza University of Rome
Rome, Italy

Mónica Vázquez del Mercado
Institute of Research in Rheumatology and Musculoskeletal System
Hospital Civil JIM
University of Guadalajara
Jalisco, Mexico

Olga Vera-Lastra
Department of Internal Medicine
Hospital de Especialidades “Dr Antonio Fraga Mouret,” Mexican Social Security Institute
National Autonomous University of Mexico
Mexico City, Mexico

Abdulla Watad
Zabludowicz Center for Autoimmune Diseases and Department of Internal Medicine B
Sheba Medical Center
Tel Hashomer, Israel

Yaron Zafrir
Department of Dermatology and Zabludowicz Center for Autoimmune Diseases
Sheba Medical Center
Tel Hashomer, Israel

Gisele Zandman-Goddard
Department of Medicine
Wolfson Medical Center
Tel Aviv, Israel
Sackler Faculty of Medicine
Tel Aviv University
Tel Aviv, Israel
Introduction

Yehuda Shoenfeld,1,2 Nancy Agmon-Levin,1,4 and Lucija Tomljenovic3

1Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel Hashomer, Israel
2Incumbent of the Laura Schwarz-Kipp Chair for Research of Autoimmune Diseases, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
3Neural Dynamics Research Group, University of British Columbia, Vancouver, BC, Canada
4Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel

Vaccines and Autoimmunity is a result of decades of experience in vaccinology, immunology, and autoimmunity, and of a review of the vast literature in this field. The book has three parts. Part I deals with general mechanisms of vaccine- and adjuvant-induced autoimmunity. In Parts II and III, we have asked the different authors to summarize, on one hand, individual vaccines and which common autoimmune diseases they may trigger in susceptible individuals (Part III), and on the other, the common autoimmune diseases and identified vaccines which may trigger their emergence (Part III).

The editors of this book are quite confident that vaccinations represent one of the most remarkable revolutions in medicine. Indeed, vaccines have been used for over 300 years and are probably one of the most effective strategies for preventing the morbidity and mortality associated with infections. Like other drugs, vaccines can cause adverse events, but unlike conventional drugs, which are prescribed to people who are ill, vaccines are administered to healthy individuals, which increases the concern over adverse reactions. Most side effects attributed to vaccines are mild, acute, and transient. Nonetheless, rare reactions, such as hypersensitivity and induction of autoimmunity, do occur, and can be severe and even fatal. In this regard, the fact that vaccines are delivered to billions of people without preliminary screening for underlying susceptibilities is thus of concern (Bijl et al., 2012; Tomljenovic and Shaw, 2012; Soriano et al., 2014).

Indeed, it is naive to believe that all humans are alike. Notably, autoimmune diseases have been increasingly recognized as having a genetic basis, mediated by HLA subtypes. For instance, celiac disease has been strongly associated with HLA haplotype DR3-DQ2 or DR4-DQ8 (Liu et al., 2014), multiple sclerosis with HLA-DRB1 (Yates et al., 2014), rheumatoid arthritis with HLA-DR4 and HLA-DQ8 (Vassallo et al., 2014), and type 1 diabetes with HLA-DR3/4 (Steck et al., 2014). Thus, certain HLA genes create a genetic predisposition toward development of autoimmune disease, typically requiring some environmental trigger to evolve into a full-blown disease state (Luckey et al., 2011). One such environmental trigger which is commonly associated with development of autoimmunity is viral (Epstein Barr virus, cytomegalovirus, and hepatitis C virus) or bacterial (Heliobacter pylori) challenge (Rose, 2010; Magen and Delgado, 2014).

The multifaceted associations between infectious agents and subsequent development of autoimmune or autoinflammatory conditions have been well established, and a number of mechanisms by which infectious agents can bring about such responses have been identified (molecular mimicry, epitope spreading, polyclonal activation, and others) (Molina and Shoenfeld, 2005; Kivity et al., 2009; Shoenfeld, 2009; Rose, 2010).
Recently, we and others have suggested another mechanism, namely the adjuvant effect, by which infections may relate to autoimmunity in a broader sense (Rose, 2010; Rosenblum et al., 2011; Shoenfeld and Agmon-Levin, 2011; Zivkovic et al., 2012; Perricone et al., 2013). Adjuvants are substances which enhance the immune response. For this purpose, they are routinely included in vaccine formulations, the most common of which are aluminum compounds (alum hydroxide and phosphate). Although the mechanisms of adjuvancy are not fully elucidated, adjuvants seem to modulate a common set of genes, promote antigen-presenting cell recruitment, and mimic specific sets of conserved molecules, such as bacteria components, thus increasing the innate and adaptive immune responses to the injected antigen (Agmon-Levin et al., 2009; Israeli et al., 2009; McKee et al., 2009; Exley et al., 2010; Perricone et al., 2013).

Although the activation of autoimmune mechanisms by both infectious agents and substances with adjuvant properties (such as those found in vaccines) is common, the appearance of an autoimmune disease is not as widespread and apparently not always agent-specific. The adjuvant effect of microbial particles, namely the nonantigenic activation of the innate and regulatory immunity, as well as the expression of various regulatory cytokines, may determine if an autoimmune response remains limited and harmless or evolves into a full-blown disease. Additionally, as already mentioned, the genetic background of an individual may determine the magnitude of adverse manifestations. For example, it has been shown that the vaccine for Lyme disease is capable of triggering arthritis in genetically susceptible hamsters and that, when the adjuvant aluminum hydroxide is added to the vaccine, 100% of the hamsters develop arthritis (Croke et al., 2000). Other studies have shown that the development of inflammatory joint disease and rheumatoid arthritis in adults in response to the HepA and HepB vaccines, respectively, is correlated to the HLA subtype of the vaccinated individual (Ferrazzi et al., 1997; Pope et al., 1998). Given that aluminum works as an adjuvant by increasing expression of MHC (Ulanova et al., 2001), it perhaps should not be surprising that in individuals susceptible to autoimmune disease on the basis of the MHC, HLA subtype might be adversely affected by the use of aluminum hydroxide in vaccines. In addition to aluminum, the vaccine preservative thimerosal has also been demonstrated to induce a systematic autoimmune syndrome in transgenic HLA-DR4 mice (Havarinasab et al., 2004), while mice with a genetic susceptibility for autoimmune disease show profound behavioral and neuropathological disturbances. These results are not observed in strains of mice without autoimmune sensitivity.

We have recently reported a new syndrome: “autoimmune/inflammatory syndrome induced by adjuvants” (ASIA), which encompasses a spectrum of immune-mediated diseases triggered by an adjuvant stimulus such as chronic exposure to silicone, tetracymethypentadecane, pristane, aluminum, and other adjuvants, as well as infectious components, which may also have an adjuvant effect. All these environmental factors have been found to induce autoimmunity and inflammatory manifestations by themselves, both in animal models and in humans (Israeli et al., 2009; Shaw and Petrrik, 2009; Shoenfeld and Agmon-Levin, 2011; Gherardi and Authier, 2012; Israeli, 2012; Cruz-Tapias et al., 2013; Lujan et al., 2013; Perricone et al., 2013).

The definition of the ASIA syndrome thus helps to detect those subjects who have developed autoimmune phenomena upon exposure to adjuvants from different sources. For example, the use of medical adjuvants has become common practice, and substances such as aluminum adjuvant are added to most human and animal vaccines, while the adjuvant silicone is extensively used for breast implants and cosmetic procedures (Kaiser et al., 1990; Molina and Shoenfeld, 2005; Israeli et al., 2009; Shoenfeld and Agmon-Levin, 2011; Cohen Tervaert and Kappel, 2013). Furthermore, “hidden adjuvants” such as infectious material and house molds have also been associated with different immune-mediated conditions associated with the so-called “sick-building syndrome” (Israeli and Pardo, 2010; Perricone et al., 2013).

Although ASIA may be labeled a “new syndrome,” in reality it reflects old truths given a formal label (Meroni, 2010). Notably, in 1982, compelling evidence from epidemiological, clinical, and animal research emerged to show that Guillain-Barre syndrome and other demyelinating autoimmune neuropathies (i.e., acute disseminated encephalomyelitis and multiple sclerosis) could occur up to 10 months following vaccination (Poser and Behan, 1982). In such cases, the disease would first manifest with vague symptoms (arthralgia, myalgia, paraesthesia, weakness; all of which are typical ASIA symptoms), which were frequently deemed insignificant and thus ignored by the treating physicians. However, these...
symptoms would progress slowly and insidiously until the patient was exposed to a secondary immune stimulus (in the form of either infection or vaccination). This would then trigger the rapid and acute clinical manifestation of the disease (Poser and Behan, 1982). In other words, it was the secondary anamnestic response that would bring about the acute overt manifestation of an already present subclinical long-term persisting disease.

Thus, it was already recognized in the early 1980s that vaccine-related manifestations often presented themselves as unspecific, yet clinically relevant symptoms (termed “bridging symptoms” Poser and Behan (1982) or “nonspecific ASIA symptoms” by us (Shoenfeld and Agmon-Levin, 2011)). These manifestations pointed to a subclinical, slowly evolving disease. Whether this disease would eventually progress to its full-blown clinically apparent form depended on whether the individual was further exposed to noxious immune stimuli, including subsequent vaccinations. As a case in point, we recently described six cases of systemic lupus following HPV vaccination (Gatto et al., 2013). In all six cases, several common features were observed; namely, a personal or familial susceptibility to autoimmunity and an adverse response to a prior dose of the vaccine, both of which were associated with a higher risk of post-vaccination full-blown autoimmunity. Similarly, in an analysis of 93 cases of autoimmunity following hepatitis B vaccination (Zafrir et al., 2012), we identified two major susceptibility factors: (i) exacerbation of adverse symptoms following additional doses of the vaccine (47% of patients); and (ii) personal and familial history of autoimmunity (21%).

It should further be noted that some individuals who are adversely afflicted through exposure to adjuvants do not satisfy all of the criteria that are necessary to diagnose a full-blown and clinically apparent autoimmune disease (Perricone et al., 2013). Nonetheless, these individuals are at higher risk of developing full-blown autoimmunity following subsequent adjuvant exposure, whether that be via infections or vaccinations (Poser and Behan, 1982; Zafrir et al., 2012; Gatto et al., 2013).

A casual glance at the US Centers for Disease Control and Prevention (CDC, 2013) immunization schedule for infants shows that according to the US prescribed guidelines, children receive up to 19 vaccinations during infancy, many of which are multivalent (Table I.1). The various vaccines given to children, as well as adults, may contain either whole weakened infectious agents or synthetic peptides and genetically engineered antigens of infectious agents and adjuvants (typically aluminum). In addition, they also contain diluents, preservatives (thimerosal, formaldehyde), detergents (polysorbate), and residuals of culture growth media (Saccharomyces cerevisiae, gelatin, bovine extract, monkey kidney tissue, etc.; Table I.2). The safety of these residuals has not been thoroughly investigated, primarily because they are presumed to be present only in trace amounts following the vaccine manufacture purification process. However, some studies...
Table I.2: Complete list of vaccine ingredients (i.e., adjuvants and preservatives) and substances used during the manufacture of commonly used vaccines. Adapted from US Centers for Disease Control and Prevention (2013b)

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>Vaccine excipient and media summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>DT (Sanofi)</td>
<td>aluminum potassium sulfate, peptone, bovine extract, formaldehyde, thimerosal (trace), modified Mueller and Miller medium</td>
</tr>
<tr>
<td>DTaP (Daptacel)</td>
<td>aluminum phosphate, formaldehyde, glutaraldehyde, 2-phenoxyethanol, Stainer–Scholte medium, modified Mueller's growth medium, modified Mueller–Miller casamino acid medium (without beef heart infusion)</td>
</tr>
<tr>
<td>DTaP (Infanrix)</td>
<td>formaldehyde, glutaraldehyde, aluminum hydroxide, polysorbate 80, Fenton medium (containing bovine extract), modified Latham medium (derived from bovine casein), modified Stainer–Scholte liquid medium</td>
</tr>
<tr>
<td>DTaP (Tripedia)</td>
<td>sodium phosphate, peptone, bovine extract (US sourced), formaldehyde, ammonium sulfate, aluminum potassium sulfate, thimerosal (trace), gelatin, polysorbate 80 (Tweens 80), modified Mueller and Miller medium, modified Stainer–Scholte medium</td>
</tr>
<tr>
<td>DTaP-HepB-IPV (Pediarix)</td>
<td>formaldehyde, gluteraldehyde, aluminum hydroxide, aluminum phosphate, lactalbumin hydrolysate, polysorbate 80, neomycin sulfate, polymyxin B, yeast protein, calf serum, Fenton medium (containing bovine extract), modified Latham medium (derived from bovine casein), modified Stainer–Scholte liquid medium, Vero (monkey kidney) cells</td>
</tr>
<tr>
<td>DTaP-IPV/Hib (Pentacel)</td>
<td>aluminum phosphate, polysorbate 80, formaldehyde, glutaraldehyde, bovine serum albumin, 2-phenoxyethanol, neomycin, polymyxin B sulfate, Mueller's Growth Medium, Mueller–Miller casamino acid medium (without beef heart infusion), Stainer–Scholte medium (modified by the addition of casamino acids and dimethyl-beta-cyclodextrin), MRC-5 (human diploid) cells, CMRL 1969 medium (supplemented with calf serum)</td>
</tr>
<tr>
<td>Hib (ActHIB)</td>
<td>ammonium sulfate, formalin, sucrose, Modified Mueller and Miller medium</td>
</tr>
<tr>
<td>Hib (Hiberix)</td>
<td>formaldehyde, lactose</td>
</tr>
<tr>
<td>Hib (PedvaxHIB)</td>
<td>formaldehyde, lactose</td>
</tr>
<tr>
<td>Hib/Hep B (Convax)</td>
<td>yeast (vaccine contains no detectable yeast DNA), nicotinamide adenine dinucleotide, hemin chloride, soy peptone, dextrose, mineral salts, amino acids, formaldehyde, potassium aluminum sulfate, amorphous aluminum hydroxophosphate sulfate, sodium borate</td>
</tr>
<tr>
<td>Hep A (Havrix)</td>
<td>aluminum hydroxide, amino acid supplement, polysorbate 20, formalin, neomycin sulfate, MRC-5 cellular proteins</td>
</tr>
<tr>
<td>Hep A (Vaqta)</td>
<td>amorphous aluminum hydroxophosphate sulfate, bovine albumin, formaldehyde, neomycin, sodium borate, MRC-5 (human diploid) cells</td>
</tr>
<tr>
<td>Hep B (Engerix-B)</td>
<td>aluminum hydroxide, yeast protein, phosphate buffers</td>
</tr>
<tr>
<td>Hep B (Recombivax)</td>
<td>yeast protein, soy peptone, dextrose, amino acids, mineral salts, potassium aluminum sulfate, amorphous aluminum hydroxophosphate sulfate, formaldehyde</td>
</tr>
<tr>
<td>Hep A/Hep B (Twinrix)</td>
<td>formalin, yeast protein, aluminum phosphate, aluminum hydroxide, amino acids, phosphate buffer, polysorbate 20, neomycin sulfate, MRC-5 human diploid cells</td>
</tr>
<tr>
<td>Human Papillomavirus (HPV) (Cervarix)</td>
<td>vitamins, amino acids, lipids, mineral salts, aluminum hydroxide, sodium dihydrogen phosphate dehydrate, insect cell and viral protein</td>
</tr>
<tr>
<td>Human Papillomavirus (HPV) (Gardasil)</td>
<td>yeast protein, vitamins, amino acids, mineral salts, carbohydrates, amorphous aluminum hydroxophosphate sulfate, L-histidine, polysorbate 80, sodium borate</td>
</tr>
<tr>
<td>Influenza (Afluria)</td>
<td>beta-propiolactone, thimerosal (multi-dose vials only), monobasic sodium phosphate, dibasic sodium phosphate, monobasic potassium phosphate, potassium chloride, calcium chloride, sodium taurodeoxycholate, neomycin sulfate, polymyxin B, egg protein</td>
</tr>
<tr>
<td>Influenza (Fluarix)</td>
<td>sodium deoxycholate, formaldehyde, octoxynol-10 (Triton X-100), α-tocopheryl hydrogen succinate, polysorbate 80 (Tweens 80), hydrocortisone, gentamicin sulfate, ovalbumin</td>
</tr>
<tr>
<td>Influenza (Fluvirin)</td>
<td>nonylphenol ethoxylate, thimerosal (multidose vial–trace only in prefilled syringe), polymyxin, neomycin, beta-propiolactone, egg proteins</td>
</tr>
<tr>
<td>Influenza (Flulaval)</td>
<td>thimerosal, α-tocopheryl hydrogen succinate, polysorbate 80, formaldehyde, sodium deoxycholate, ovalbumin</td>
</tr>
<tr>
<td>Influenza (Fluzone: standard, high-dose, &amp; intradermal)</td>
<td>formaldehyde, octylphenol ethoxylate (Triton X-100), sodium phosphate, gelatin (standard formulation only), thimerosal (multidose vial only), egg protein</td>
</tr>
<tr>
<td>Influenza (FluMist)</td>
<td>ethylene diamine tetraacetic acid (EDTA), monosodium glutamate, hydrolyzed porcine gelatin, arginine, sucrose, dibasic potassium phosphate, monobasic potassium phosphate, gentamicin sulfate, egg protein</td>
</tr>
<tr>
<td>Vaccine</td>
<td>Vaccine excipient and media summary</td>
</tr>
<tr>
<td>---------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>Meningococcal (MCV4Menactra)</td>
<td>formaldehyde, phosphate buffers, Mueller Hinton agar, Watson Scherp media, Modified Mueller and Miller medium</td>
</tr>
<tr>
<td>Meningococcal (MCV4Menveo)</td>
<td>formaldehyde, amino acids, yeast extract, Franz complete medium</td>
</tr>
<tr>
<td>Meningococcal (MPSV4Menomune)</td>
<td>thimerosal (multidose vial only), lactose, Mueller Hinton agar, Watson Scherp media</td>
</tr>
<tr>
<td>MMR (MMR-II)</td>
<td>vitamins, amino acids, fetal bovine serum, sucrose, sodium phosphate, glutamate, recombinant human albumin, neomycin, sorbitol, hydrolyzed gelatin, chick embryo cell culture, WI-38 human diploid lung fibroblasts</td>
</tr>
<tr>
<td>MMRV (ProQuad)</td>
<td>sucrose, hydrolyzed gelatin, sorbitol, monosodium L-glutamate, sodium phosphate dibasic, human albumin, sodium bicarbonate, potassium phosphate monobasic, potassium chloride, potassium phosphate dibasic, neomycin, bovine calf serum, chick embryo cell culture, WI-38 human diploid lung fibroblasts, MRC-5 cells</td>
</tr>
<tr>
<td>Pneumococcal (PCV13 – Prevnar 13)</td>
<td>casamino acids, yeast, ammonium sulfate, Polysorbate 80, succinate buffer, aluminum phosphate</td>
</tr>
<tr>
<td>Polio (IPV – Ipol)</td>
<td>2-phenoxyethanol, formaldehyde, neomycin, streptomycin, polymyxin B, monkey kidney cells, Eagle MEM modified medium, calf serum protein</td>
</tr>
<tr>
<td>Rabies (Imovax)</td>
<td>albumin, neomycin sulfate, phenol, MRC-5 human diploid cells</td>
</tr>
<tr>
<td>Rabies (RabAvert)</td>
<td>β-propiolactone, potassium glutamate, chicken protein, ovalbumin, neomycin, chlorotetracycline, amphotericin B, human serum albumin, polygeline (processed bovine 14 gelatin)</td>
</tr>
<tr>
<td>Rotavirus (RotaTeq)</td>
<td>sucrose, sodium citrate, sodium phosphate monobasic monohydrate, sodium hydroxide, Polysorbate 80, cell culture media, fetal bovine serum, vero cells (DNA from porcine circoviruses (PCV) 1 and 2 has been detected in RotaTeq; PCV-1 and PCV-2 are not known to cause disease in humans)</td>
</tr>
<tr>
<td>Rotavirus (Rotarix)</td>
<td>amino acids, dextran, sorbitol, sucrose, calcium carbonate, xanthan, Dulbecco’s Modified Eagle Medium (DMEM) (Porcine circovirus type 1 (PCV-1) is present in Rotarix; PCV-1 is not known to cause disease in humans)</td>
</tr>
<tr>
<td>Td (Decavac)</td>
<td>aluminum potassium sulfate, peptone, formaldehyde, thimerosal, bovine muscle tissue (US sourced), Mueller and Miller medium</td>
</tr>
<tr>
<td>Td (Tenivac)</td>
<td>aluminum phosphate, formaldehyde, modified Mueller–Miller casamino acid medium without beef heart infusion</td>
</tr>
<tr>
<td>Td (Mass Biologics)</td>
<td>aluminum phosphate, formaldehyde, thimerosal (trace), ammonium phosphate, modified Mueller's media (containing bovine extracts)</td>
</tr>
<tr>
<td>Tdap (Adacel)</td>
<td>aluminum phosphate, formaldehyde, glutaraldehyde, 2-phenoxyethanol, ammonium sulfate, Mueller’s growth medium, Mueller–Miller casamino acid medium (without beef heart infusion)</td>
</tr>
<tr>
<td>Tdap (Boostrix)</td>
<td>formaldehyde, glutaraldehyde, aluminum hydroxide, Polysorbate 80 (Tween 80), Latham medium derived from bovine casein, Fenton medium containing a bovine extract, Stainer–Scholte liquid medium</td>
</tr>
<tr>
<td>Typhoid (inactivated – Typhim Vi)</td>
<td>hexadecyltrimethylammonium bromide, phenol, polydimethylsiloxane, disodium phosphate, monosodium phosphate</td>
</tr>
<tr>
<td>Typhoid (oral – Ty21a)</td>
<td>yeast extract, casein, dextrose, galactose, sucrose, ascorbic acid, amino acids</td>
</tr>
<tr>
<td>Varicella (Varivax)</td>
<td>sucrose, phosphate, glutamate, gelatin, monosodium L-glutamate, sodium phosphate dibasic, potassium phosphate monobasic, potassium chloride, sodium phosphate monobasic, EDTA, residual components of MRC-5 cells including DNA and protein, neomycin, fetal bovine serum, human diploid cell cultures</td>
</tr>
<tr>
<td>Yellow Fever (YF-Vax)</td>
<td>sorbitol, gelatin, egg protein</td>
</tr>
<tr>
<td>Zoster (Shingles – Zostavax)</td>
<td>sucrose, hydrolyzed porcine gelatin, monosodium L-glutamate, sodium phosphate dibasic, potassium phosphate monobasic, neomycin, potassium chloride, residual components of MRC-5 cells including DNA and protein, bovine calf serum</td>
</tr>
</tbody>
</table>
suggest that even these trace amounts may not be inherently safe, as was previously assumed (Moghaddam et al., 2006; Rinaldi et al., 2013).

What is obvious, nonetheless, is that a typical vaccine formulation contains all the necessary biochemical components to induce autoimmune manifestations. With that in mind, our major aim is to inform the medical community regarding the various autoimmune risks associated with different vaccines. Physicians need to be aware that in certain individuals, vaccinations can trigger serious and potentially disabling and even fatal autoimmune manifestations. This is not to say that we oppose vaccination, as it is indeed an important tool of preventative medicine. However, given the fact that vaccines are predominantly administered to previously healthy individuals, efforts should be made to identify those subjects who may be at more risk of developing adverse autoimmune events following vaccine exposure. In addition, careful assessment should be made regarding further vaccine administration in individuals with previous histories of adverse reactions to vaccinations. The necessity of multiple vaccinations over a short period of time should also be considered, as the enhanced adjuvant-like effect of multiple vaccinations heightens the risk of post-vaccine-associated adverse autoimmune and inflammatory manifestations (Tsumiyama et al., 2009; Lujan et al., 2013). Finally, we wish to encourage efforts toward developing safer vaccines, which should be pursued by the vaccine manufacturing industry.

References


McKee, A.S., Munks, M.W., MacLeod, M.K., et al. (2009). Alum induces innate immune responses through macrophage and mast cell sensors, but these...
sensors are not required for alum to act as an adjuvant for specific immunity. *J Immunol*, **183**: 4403–14.


